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Option 1: Vectors

1 Four points have coordinates 

(i) Find the vector product [4]

(ii) For the case when AB is parallel to CD,

(A) state the value of k, [1]

(B) find the shortest distance between the parallel lines AB and CD, [6]

(C) find, in the form the equation of the plane containing AB and CD.
[3]

(iii) When AB is not parallel to CD, find the shortest distance between the lines AB and CD, in
terms of k. [4]

(iv) Find the value of k for which the line AB intersects the line CD, and find the coordinates of
the point of intersection in this case. [6]

Option 2: Multi-variable calculus

2 A surface has equation .

(i) Find a normal vector at the point on the surface. [4]

(ii) Find the equation of the tangent plane to the surface at the point [4]

(iii) The point , where h and p are small, is on the surface and is close to Q.

Find an approximate expression for p in terms of h. [4]

(iv) Show that there is no point on the surface where the normal line is parallel to the z-axis. [4]

(v) Find the two values of k for which is a tangent plane to the surface. [8]5x � 6y � 2z � k

(17 � h, 4 � p, 1 � h)

Q(17, 4, 1).

(x, y, z)

x 2 � 4xy � 3y 2 � 2z2 � 63 � 0

ax � by � cz � d � 0,

AB
Æ

� CD
Æ

.

A(–2, –3, 2), B(–3, 1, 5), C(k, 5, –2) and D(0, 9, k).
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Option 3: Differential geometry

3 The curve C has parametric equations 

(i) Find the length of the arc of C for which [6]

(ii) Find the area of the surface generated when the arc of C for which is rotated
through radians about the x-axis. [5]

(iii) Show that the equation of the normal to C at the point with parameter t is

[4]

(iv) Find the cartesian equation of the envelope of the normals to C. [6]

(v) The point is the centre of curvature corresponding to a point on C. Find a. [3]P(64, a)

y
t

t x t t= -Ê
Ë

ˆ
¯ + + +

1
2

1
2 32 4 .

2p
0 � t � 1

0 � t � 1.

x � 2t3�6t, y � 6t2.
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Option 4: Groups

4 The group G consists of the 8 complex matrices under matrix
multiplication, where

(i) Copy and complete the following composition table for G. [6]

(Note that )

(ii) State the inverse of each element of G. [3]

(iii) Find the order of each element of G. [3]

(iv) Explain why, if G has a subgroup of order 4, that subgroup must be cyclic. [4]

(v) Find all the proper subgroups of G. [5]

(vi) Show that G is not isomorphic to the group of symmetries of a square. [3]

JK � L and KJ � –L.

I J K L –I –J –K –L

I I J K L –I –J –K –L

J J –I L –K –J I –L K

K K –L –I

L L K

–I –I –J

–J –J I

–K –K L

–L –L –K

I J K L= Ê
Ë

ˆ
¯ = -

Ê
Ë

ˆ
¯ = -

Ê
Ë

ˆ
¯ = Ê

Ë
ˆ
¯

1 0
0 1

0
0

1
1 0 0

, , , .
j

j
0 0 j

j

�I, J, K, L, –I, –J, –K, –L �



Option 5: Markov chains

5 A local hockey league has three divisions. Each team in the league plays in a division for a year.
In the following year a team might play in the same division again, or it might move up or down
one division.

This question is about the progress of one particular team in the league. In 2007 this team will be
playing in either Division 1 or Division 2. Because of its present position, the probability that it
will be playing in Division 1 is 0.6, and the probability that it will be playing in Division 2 is 0.4.

The following transition probabilities apply to this team from 2007 onwards.

• When the team is playing in Division 1, the probability that it will play in Division 2 in the
following year is 0.2.

• When the team is playing in Division 2, the probability that it will play in Division 1 in the
following year is 0.1, and the probability that it will play in Division 3 in the following year
is 0.3.

• When the team is playing in Division 3, the probability that it will play in Division 2 in the
following year is 0.15.

This process is modelled as a Markov chain with three states corresponding to the three divisions.

(i) Write down the transition matrix. [3]

(ii) Determine in which division the team is most likely to be playing in 2014. [6]

(iii) Find the equilibrium probabilities for each division for this team. [3]

In 2015 the rules of the league are changed. A team playing in Division 3 might now be dropped
from the league in the following year. Once dropped, a team does not play in the league again.

• The transition probabilities from Divisions 1 and 2 remain the same as before.

• When the team is playing in Division 3, the probability that it will play in Division 2 in the
following year is 0.15, and the probability that it will be dropped from the league is 0.1.

The team plays in Division 2 in 2015.

The new situation is modelled as a Markov chain with four states: ‘Division1’, ‘Division 2’,
‘Division 3’ and ‘Out of league’.

(iv) Write down the transition matrix which applies from 2015. [3]

(v) Find the probability that the team is still playing in the league in 2020. [5]

(vi) Find the first year for which the probability that the team is out of the league is greater than 0.5.
[4]
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For appropriate vector product 
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previous M1 
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Dependent on previous M1 
Allow 2520540 =−+− zyx  etc 
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Shortest distance is 
3

122 −k  

 
M1 
 
M1 
 
A1 ft 
 
A1 
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For )CDAB(.AC ×  
 
Fully correct method (evaluation 
not required)  Dependent on 
previous M1 
Correct evaluated expression 
for distance   ft from (i) 
Simplified answer 
  Modulus not required 
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   (iv) Intersect when 6=k  

 
μλ

μλ
μλ

8232
4543
662

+−=+
+=+−
−=−−

 

Solving, 2,4 == μλ  
Point of intersection is )14,13,6( −  

B1 ft 
M1 
A1 ft 
M1 
  
A1 
A1 
 6

 
Forming at least two equations 
Two correct equations 
Solving to obtain μλ or  
  Dependent on previous M1 
One value correct 

 
OR 

μλ
μλ
μλ

)2(232
4543

2

++−=+
+=+−
−=−−

k

kk
 

A1
M1

 Solving, 6=k  M1A1
               2,4 == μλ  A1
 Point of intersection is )14,13,6( −  A1

  
Forming three equations 
 
All equations correct 
 
Dependent on previous M1 
One value correct 
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 2 (i)  

Normal vector is 
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⎟
⎟
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Partial differentiation 
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⎟
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For 4 marks the normal must 
appear as a vector (isw) 

   (ii) 
At Q normal vector is 
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⎟
⎟

⎠
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Tangent plane is 
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=−−=−−
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M1 
  
M1  
 
M1 
A1 
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For zyx 44418 −−  
  Dependent on previous M1 
Using Q to find constant 
Accept any correct form 

   (iii)  
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2
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≈
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M1 
A1 ft  
M1  
A1 
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For zyx δδδ 44418 −−  
 
 
If left in terms of x, y, z:  
M1A0M1A0 

 OR 63)1(2)4(22)17(9 ≈−−+−+ hph  M2A1 ft
 hp 2

1≈  A1
  

 OR 0...)4)(17(4)17( 2 =+++−+ phh  
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Neglecting second order terms 

 
OR 

6
19368828444 2 ++±+

=
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 hp 2
1≈  A1

  

   (iv) Normal parallel to z-axis requires 
 064and042 =+−=− yxyx  
 0632then;0 2 =−−== zyx  
No solutions; hence no such points 

 
M1A1 ft 
 
M1  
A1 (ag) 
 4

 
 
 
 
Correctly shown 

 OR xyyxyx 5
3so,6442 =+−=−  

 0632 22
25
8 =−−− zx , hence no points

 M2A2 

  
Similarly if only 042 =− yx  used 

   (v) 

λ
λ

λ
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z
yx
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1

2
3 ,2, −=−=−= zyx  

Substituting into equation of surface 

 
6
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4
9
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λ
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M1A1 ft 
 
M1 
 
 
M1  
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M1 

 
 
 
 
Obtaining x, y, z in terms of λ  
or zyzx 4,3 ==  
 
 
Obtaining a value of λ  (or 
equivalent)  
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Point 2167245gives)3,12,9( =−+−=−−− k
Point 2167245gives)3,12,9( −=+−=k  

A1 
A1 
 8

Using a point to find k  
If 1=λ  is assumed:  
M0M1M0M0M1 
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   (ii)  
Curved surface area is 
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Using ∫ sy d...  (in terms of t) 
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Method of differentiation 
 
 
 
 
 
 
 
At least one intermediate step 
required 
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   (iv) Differentiating partially with respect to t 
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Give A1 if just one error or 
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For obtaining 3tbxa =  
 
Eliminating t 
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   (v) P lies on the envelope of the normals 
 
 

Hence 36464 3
4

16
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2

2
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       21−=  

M1 
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A1 
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Or a fully correct method for 
finding the centre of curvature at 
a general pt 
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4757 Mark Scheme    June 2006 
 

 

 
           

  I J K L –I –J –K –L  

 I I J K L –I –J –K –L  

 J J –I L –K –J I –L K  

 K K –L –I J –K L I –J  

 L L K –J –I –L –K J I  

 –I –I –J –K –L I J K L  

 –J –J I –L K J –I L –K  

 –K –K L I –J K –L –I J  

 –L –L –K J I L K –J –I  

 4 (i) 

           

 
 
 
 
 
 
B6 
 6

 
 
 
 
 
 
Give B5 for 30 (bold) entries 
correct 
Give B4 for 24 (bold) entries 
correct 
Give B3 for 18 (bold) entries 
correct 
Give B2 for 12 (bold) entries 
correct 
Give B1 for 6 (bold) entries 
correct 

           

Eleme
nt 

I J K L –I –J –K –L  

Invers
e 

I –J –K –L –I J K L  

   (ii) 

           

 
 
B3 
 3

 
 
Give B2 for six correct 
Give B1 for three correct 

           

Eleme
nt 

I J K L –I –J –K –L  

Order 1 4 4 4 2 4 4 4  

   (iii) 

           

 
 
B3 
 3

 
 
Give B2 for six correct 
Give B1 for three correct 

   (iv) Only two elements of G do not have order 4; 
so any subgroup of order 4 must contain an 
element of order 4 
A subgroup of order 4 is cyclic if it contains 
an element of order 4 
Hence any subgroup of order 4 is cyclic 

 
 
M1A1 
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A1 
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(may be implied) 
For completion 

 OR If a group of order 4 is not cyclic, 
    it contains three elements of order 2
 B1 
 G has only one element of order 2; so 
   this cannot occur M1A1
 So any subgroup of order 4 is cyclic A1

  

   (v) },{ II −  
},,,{ JIJI −−  

},,,{ KIKI −−  
},,,{ LILI −−  
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B1  
B1  
B1 
 5

 
 
 
 
  
For },{ II − , at least one 
correct subgroup of order 4, and 
no wrong subgroups. This mark 
is lost if G or }{ I  is included 
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   (vi) The symmetry group has 5 elements of order 
2 
(4 reflections and rotation through °180 ) 
 
G has only one element of order 2, hence G 
is not isomorphic to the symmetry group 

M1 
 
A1 
 
A1 
 3

Considering elements of order 2
  (or self-inverse elements) 
Identification of at least two 
elements of order 2 in the 
symmetry group 
For completion 
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Pre-multiplication by transition matrix 
5 (i) 
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Considering 7P  (or 68 or PP ) 
Evaluating a power of P 
For 7P   (Allow 001.0±  
throughout) 
Evaluation of probabilities 
One probability correct 
Correctly determined 
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Considering 5Q  (or 46 or QQ ) 
 
Evaluating a power of Q 
 
For 0.1563  (Allow 001.0156.0 ± ) 
 
 
 
 
 
 
For 2,41 a−  
ft dependent on M1M1M1 

    (vi) P(out of league) is element na Qin2,4  
 
When 4849.0,15 2,4 == an  
When 5094.0,16 2,4 == an  
First year is 2031 

 
M1 
  
M1 
 
A1  
A1 
 4

Considering nQ  for at least two 
more values of n 
Considering 2,4a  Dep on 
previous M1  
For 16=n   
SR With no working, 
         16=n  stated    B3 
         2031  stated      B4 
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Post-multiplication by transition matrix 
5 (i) 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

85.015.00
3.06.01.0

02.08.0
P  

 
B1B1B1 
 3

 
For the three rows 

   (ii) ( )

( )

( )445.0301.0254.0
6293.02780.00927.0
5560.02895.01545.0
3706.03089.03204.0

04.06.0

04.06.0 7

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

P

 

Division 3 is the most likely 

 
M1  
M1  
A1 
 
M1 
A1 
A1 
 6

Considering 7P  (or 68 or PP ) 
Evaluating a power of P 
For 7P    (Allow 001.0±  
throughout) 
 
Evaluation of probabilities 
One probability correct 
Correctly determined 

   (iii) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
→

5714.02857.01429.0
5714.02857.01429.0
5714.02857.01429.0

nP  

Equilibrium probabilities are 0.143,  0.286,  
0.571 

M1 
 
M1 
 
A1 
 3

Considering powers of P 
 
Obtaining limit 
 
Must be accurate to 3 dp if 
given as decimals 

 OR ( ) ( )rqprqp =P  

 
rrq

qrqp
pqp

=+
=++

=+

85.03.0
15.06.02.0

1.08.0
 M1

 1and42,2 =++=== rqppqrpq  M1
 7

4
7
2

7
1 ,, === rqp  A1

  
 
 
Obtaining at least two equations
 
 
Solving (must use 1=++ rqp ) 

    (iv) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
1.075.015.00

03.06.01.0
002.08.0

Q  

B1  
B1  
B1 
 3

Third row  
Fourth row  
Fully correct 

    (v) ( )

( )

( )1563.04105.02767.01566.0
1000

3326.04030.02052.00592.0
1563.04105.02767.01566.0
0378.02369.03131.04122.0

0010

0010 5

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

Q

 

 
P(still in league) 1563.01 −=  
                  844.0=  

 
M1 
 
M1 
 
A1 
 
 
 
 
 
M1 
A1 ft 
 5

Considering 5Q  (or 46 or QQ ) 
 
Evaluating a power of Q 
 
For 0.1563   (Allow 001.0156.0 ± )
 
 
 
 
 
For 4,21 a−  
ft dependent on M1M1M1 
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    (vi) P(out of league) is element na Qin4,2  
 
When 4849.0,15 4,2 == an  
When 5094.0,16 4,2 == an  
First year is 2031 

 
M1 
  
M1 
 
A1  
A1 
 4

Considering nQ  for at least two 
more values of n 
Considering 4,2a  Dep on 
previous M1  
For 16=n   
SR With no working, 
         16=n  stated    B3 
         2031  stated      B4 
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4757 - Further Applications of Advanced Mathematics (FP3) 
 
General Comments 
 
There were some excellent scripts, with about 15% of candidates scoring more than 60 marks 
(out of 72), and a wide range of performance; about 20% of the candidates scored less than 30 
marks. Questions 1 and 2 were the most popular, and questions 3 and 5 were the least popular. 
Some candidates indicated that they were running out of time, and very few presented answers 
to more than the required three questions. The average marks for the questions were about 14 
(out of 24) for questions 1, 2 and 3; about 16 for question 4 and about 18 for question 5. 
 
Comments on Individual Questions 
 
1) Vectors 

The techniques required in this question were generally well known, although weaker 
candidates often had difficulty selecting which vectors to use in the formulae, for example 
using one of the position vectors when a displacement vector such as CD  was required. 
Parts (i) and (ii)(A) were almost always answered correctly. 
Part (ii)(B) was often answered correctly, although many candidates tried to use the 
formula for the distance between skew lines. 
Part (ii)(C) was answered well. 
In part (iii) some candidates continued to take 1=k , but the method was very well 
understood. Many had problems simplifying the answer, especially when the factor )1( −k  
had not been taken out of the direction vector for the common perpendicular. 
Part (iv) was well answered. The value of k could be deduced from part (iii), but this was 
not always easy when the answer to (iii) was wrong or unsimplified. Even so, it was not 
difficult to start afresh and find the point of intersection, and k, from the three component 
equations, and many candidates did this successfully. 
 

2) Multi-variable calculus 
Part (i) was almost always answered correctly. Many candidates gave the equation of the 
normal line as their final answer, instead of the normal vector, but this was not penalised. 
Part (ii) was usually answered correctly, and part (iii) was also well answered, although 

zδ was often taken to be h instead of h− . 
In part (iv) the condition for the normal line to be parallel to the z-axis was usually stated 

correctly, although some thought that it was 0g
=

∂
∂

z
. Quite a number asserted that the 

simultaneous equations 042 =− yx  and 064 =+− yx  were inconsistent, when they are 
clearly satisfied by . Very many candidates completed this part correctly. 0== yx
There were few correct solutions to part (v). Most candidates wrote 542 =− yx , 

,  instead of 664 −=+− yx 24 =− z λ542 =− yx , λ664 −=+− yx , λ24 =− z , and these 
could score only 2 out of the 8 marks. 
 

3) Differential geometry 
Parts (i), (ii) and (iii) were very often answered correctly. 
In part (iv) many candidates differentiated correctly, but further progress depended on 
dividing by  to obtain . Very few obtained the correct answer. )1( 2t+ 38tx =
In part (v) candidates generally knew that they should substitute 64=x  into the answer to 
part (iv). A few tried to find the centre of curvature at a general point, seldom successfully. 
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4) Groups 

In part (i) the completion of the table was generally well done. It was often completely 
correct, and the most common error was to mix up J and J− . 
Parts (ii) and (iii) were well answered. 
In part (iv) about half the candidates gave a satisfactory explanation. They were expected 
to say that any set of four elements must include (at least two) elements of order 4, and 
that a subgroup of order 4 containing an element of order 4 must be cyclic. 
In part (v) the four proper subgroups were usually given, but {I} was very often given as 
well; this resulted in the loss of one mark. 
In part (vi) candidates usually referred to elements of order 2, but did not always clearly 
identify at least two such elements in the symmetry group. 
 

5) Markov chains 
Most of the candidates who chose this question showed a very good understanding of the 
topic and were able to use their calculators to manipulate the matrices efficiently. No part 
of the question caused particular difficulty, and about one third of the attempts scored full 
marks. 
In part (iii) the equilibrium probabilities could be found either by solving simultaneous 
equations or by considering a high power of the transition matrix; the first of these 
approaches was slightly more commonly used. 
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